网上怎么赚钱:陶哲轩稍稍撬动了3x+1猜想

作者:网赚指南日期:

分类:网赚指南

看下陶哲轩wp,问卷调查赚钱,这个结果感觉非常强烈。这对于这样一个偶然的F是正确的,但是译者无意中加强了一点(笑声 “只要{f(n)}是一个趋向于积极和无限的真实序列,只有不超过有限数量的例外,就有S(n)≤F(n)” ,这里不是“排除不超过有限数量的例外”!事实上 原特别提醒,S(n)≤f(n)为& # 34;几乎& # 34;这里所有的n几乎都是“对数密度”的意思,而不是“自然密度”的意思

为了解释这一点,首先,解释如何在“无限集合”中定义概率 。一般来说,掷骰子有六个面,手机上网怎么赚钱赚钱的好项目,每个面的概率是1/6,因为只有六个结果。如果我想从[0,1]区间随机选择一个数字,并且有无限的选项,那么选择0.123的概率是多少?它是零。这个答案很无聊,因为这个问题问得不好。如果我问在[0,0.5]范围内所选数字的概率是多少,开网店赚钱,那么我们可以回答1/2。从数学上讲,为了给上述问题一个严密的逻辑基础,我们需要定义勒贝格测度(没有详细解释)。在勒贝格测度(Lebesgue measure)的意义上,区间[0,0.2的测度(或所占空间的大小)是0.2,我们也可以说[0,1]中所有有理数集合的测度(有理数所占空间的大小)是0,也就是说,[0,1]中的空间几乎都是无理数,这个“几乎”(几乎)几乎就是勒贝格测度的意义上的“几乎”

类似地,假设满足S(n)≤f(n)的所有自然数N构成集合M,问题是自然数集合N中有多少空间M“占据”。陶哲轩说,几乎所有的N都是M,如何赚钱,这只是“对数密度”意义上的“几乎”,在家上网赚钱的项目,比“自然密度”意义上的更弱。自然密度是什么意思,在家就赚钱,也就是说,淘宝卖什么赚钱,我首先看到有多少个前k个自然数满足S(n)≤f(n)(也就是说,有多少个自然数属于集合m),然后把这个数除以k,也就是集合m在前k个自然数中的“份额”,最后当k接近无穷大时取极限。如果极限是1,我们会说几乎所有的n都是m。

相关阅读

关键词不能为空